Powers of Two and Exponential Relationships: An Investigation into Exponential Partial Sums

Jesse J. Ramirez

Mathematical Evolutions

Jennifer McCarthy and Andrew Platek

Summer Ventures in Science and Mathematics

The University of North Carolina at Charlotte

Abstract

This paper is concerned with the patterns that arise from simple series of numbers with exponents and their sums. I explored the relationships from one series to another and came upon a few interesting properties. If three numbers, $2^n+2^{n+1}+2^{n+2}$, are added together the sum can also be calculated by multiplying the first term 2^n by 7. This works with any three consecutive exponents. Similarly, any three numbers with exponents increasing by a common difference, *d*, with a common base, *b*, and an initial exponent, *n*, that is, $b^n+b^{n+d}+b^{n+2d}$, will always be equal to the initial term, b^n , times $b^{2d}+b^d+1$. The function $y = b^{2d}+b^d+1$ calculates the constant of multiplication for any series with a common exponential difference of *d* and a base of *b*. This results in the equation $b^n+b^{n+d}+b^{n+2d} = (b^{2d}+b^d+1)\times b^n$. There are also other generalizations and variations of this equation, one being to have an amount, *m*, that is multiplied to the difference, *d*, and added to the exponent, *n*. This would result in the series

$$b^{n}+b^{n+d}+b^{n+2d}+\ldots+b^{n+md}=(b^{(m)d}+b^{(m-1)d}+\ldots+b^{2d}+b^{d}+1)\times b^{n}$$

where there are a total of m+1 terms that are added together. I investigated these series and came upon these properties, though if I explored this topic I am certain more patterns would be clear. Nonetheless, the ones I have found are explained and illustrated in this report.