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Abstract 

Fermat’s Last Theorem has been a mathematical enigma for over three hundred years.  First 

developed by Pierre de Fermat, it takes its origins from Pythagoras and the Pythagorean 

Theorem.  Fermat’s Last Theorem deals with the equation .  Fermat 

believed that there were no whole number solutions to this equation, and the challenge he left for 

future mathematicians was to prove this statement.  The history of the many attempts to answer 

Fermat’s challenge is full of both success and failure, (mostly failure) until finally in 1995 a 

complete proof was discovered for Fermat’s Last Theorem.     
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There have been few mathematical riddles throughout history that can be compared to the 

highly debated and controversial Fermat’s Last Theorem.  First discovered in the 1600s it was 

three hundred years later before someone created an acceptable proof for the theorem.  At a first 

glance Fermat’s riddle looks surprisingly simple.  He states that there are no whole number 

solutions for the equation   If one simply substitutes combinations 

of numbers into the equation, Fermat appears to be correct that no solutions exist.  For example 

if one substitutes the values 6, 8, and 9 into  the result is

.  Other combinations of values produce similar results, however even though 

Fermat’s Theorem seems to be true for a few cases, mathematicians cannot extrapolate those 

findings to other number combinations, and with an infinite amount of numbers it is impossible 

to individually check each possible solution.  The only way to be sure that Fermat’s Theorem is 

in fact true is to create a mathematical proof, and it is the discovery of such a proof that has 

stumped some of the greatest mathematicians of the age.  Adding insult to injury it appears that 

Pierre de Fermat had a proof for his Theorem but chose not to write it down.  In the margin next 

to where he proposed that has no solution he wrote I have a truly marvelous 

demonstration of this proposition which this margin is to narrow to contain (Simon Singh 1997).  

Whether Fermat did in fact have a proof is not known but what is clear is that his cryptic 

message started a journey of mathematical frustration that did not end until three hundred years 

later. 
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The interesting thing about Fermat’s Last Theorem is its close relationship to the 

Pythagorean Theorem, a topic that is taught in most high schools.  The Pythagorean Theorem 

states that for any right triangle the two shorter legs squared and added together will equal the 

hypotenuse squared.  This can be represented by the equation .  Remember that 

Fermat’s equation is   This similarity is not a coincidence, much of 

Fermat’s work in number theory was in fact inspired by Pythagoras and this equation was no 

exception.  When Fermat’s Theorem was first noticed by the mathematical community they too 

recognized the resemblance, but they soon found out that this did not make it any easier to prove. 

 The first real progress in the search for a proof of Fermat’s Theorem was made by 

Leonard Euler, almost one hundred years after Fermat’s death.  Looking through Fermat’s 

jumbled notes Euler discovered a proof for a different problem that when switched around also 

proved the equation   Fermat had unknowingly or knowingly 

proved part of his Theorem, specifically that the equation  has no whole number 

solutions.  (Remember that the original equation  represents an infinite amount of 

other equations as long as . Using these notes Euler fashioned a proof for  and with 

this success hoped to extrapolate the proof to all the other equations.  The method that Fermat 

and Euler used to prove the two equations is known today as the method of infinite descent 

which is a type of proof by contradiction.  In the case of  , Fermat was actually 

trying to prove that the area of a right triangle cannot be the area of a square with sides of whole 

numbers.  Fermat began his proof by assuming that there does exists a right triangle with an area 

equal to a square, and that the existence of such a triangle must also mean the existence of a 

certain equation.  This equation derived from Fermat’s own words is .  Through  
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some manipulation this equation can also prove .  If one substitutes for p in the 

previous equation one gets which is the Last Theorem.  So 

when Fermat proved that there are no right triangles with the same area as a square he also 

proved that there are no solutions for the equation  (Larry 

Freeman,2005).    A clearer description of how the method of infinite descent works is shown in 

how Euler constructed his proof.     

By assuming that there existed solutions to the equation Euler showed 

that there would also have to be solutions that were smaller than called   

Then he showed that there would have to be even smaller solutions .  This pattern 

continued until the solutions become infinitesimally small, however since this contradicts the 

fact that  have to be whole numbers there must be no solutions to  

(Singh,1997).  One major difference between Euler’s and Fermat’s proof is that Euler had to 

include imaginary numbers to make it work for . 

 Even after Euler’s work, Fermat’s Last Theorem was still far from being 

completely proved.  At the moment only two cases of the theorem had proofs;  

However it was soon discovered that the proof for  also worked for any multiple of 4, 

because any number that can be written as a power of 8, 12, 16… (all multiples of four) can also 

be rewritten as a number to the 4
th

 power.  The same is true for   What was also realized  

was that it was only necessary to prove the Last Theorem for the prime values of , because any 

other number can be found by multiplying different combinations of prime numbers.  So if you  
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prove the prime numbers for  then you would also automatically 

prove any other value of   The problem with this is that there is an infinite amount of prime 

numbers so one could not just go through and prove each prime individually (Singh, 1997). 

The next mathematician to make a major contribution towards proving the Last Theorem 

was Sophie Germain in the early 1800s.  Her work was concentrated on a particular set of prime 

numbers  where   is also a prime number.  For example, eleven would be a Germain 

prime because which is a prime.  Thirteen is not a Germain prime however, 

because .  Germain argued that the equation   where 

was unlikely to have any solutions because, as seen in her calculations, either would 

have to be a multiple of . (Singh, 1997)     

Thanks to Germain’s work, more proofs of individual  values began to pop up.  In 1825 

Gustav Lejeune-Dirichlet and Adrien-Marie Legendre both created proofs for based on 

Germain’s method.  Soon after, Gabriel Lamé proved the case for .  Then on March 1, 

1847 two separate mathematicians announced they were on the verge of completing a proof for 

the Last Theorem.  The two were Augustin Cauchy and Gabriel Lamé, Lamé being the same one 

who created the proof for  earlier.  Only a few weeks later however the race for the proof 

of the Last Theorem was once again set back.   

Ernst Kummer was another well known number theorist of his time and when he heard 

that Cauchy and Lamé were each coming close to developing a proof  he decided to look over  
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the few notes they had published.  After reading their work Kummer came to the conclusion that  

both Cauchy and Lamé were going to fail because of one illogical step in their reasoning.  Both 

proofs contained unique factorization, a property that states that there is only one combination of 

prime numbers that will multiply together to get another number. For example, the only prime 

numbers that multiply together to get sixteen is: 

 

Other examples are: 

 

 

 

Usually, the inclusion of unique factorization in mathematical proofs is widely accepted, but 

what makes it different for Cauchy and Lamé is the use of imaginary numbers in their proofs.  

Kummer asserted that while unique factorization holds true for any real number, it becomes 

invalid with the addition of complex or imaginary numbers.  For instance, the only way the 

integer sixteen can be factored using real prime numbers is , however if one were 

to take imaginary numbers into account then sixteen could  additionally be factored as: 

  

Or alternately: 
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As this example shows, the introduction of complex numbers subsequently leads to there being   

not just one unique factorization, but several factorizations. (Freeman, 2005)  Since both 

Cauchy’s and Lamé’s proofs heavily relied on unique factorization, Kummer’s discovery set 

them back far.  Neither one could sufficiently alter their proof enough to make it work, and 

eventually they gave up on their efforts.  Kummer however, found a way to restore unique 

factorization for certain prime numbers, and using this technique was able to prove many prime 

values of  for Fermat’s Last Theorem.  He soon learned however, that there existed “irregular 

primes” with which he was unable to work with.  Some examples of these prime numbers 

include  (Singh, 1997)        

    It was not until the late 1950s before there were any more significant breakthroughs 

towards developing a proof for the Last Theorem, and by then most of the mathematical 

community had given up hope of ever finding a solution.  Yutaka Taniyama and Goro Shimura 

were two highly talented number theorists who, after a chance meeting, decided to work together 

and combine their research.  What they came up with is known as the Taniyama-Shimura 

conjecture.  

 The Taniyama-Shimura conjecture states that every elliptic equation has a corresponding 

modular form that has the same matching elements.  In order to comprehend the significance of 

this finding, it is necessary for one to understand the properties of both elliptic equations and 

modular forms.  An elliptic equation takes the form of .  Not unlike 

Fermat’s Last Theorem, the problem with this type of equation is the difficulty in testing for all 

the possible solutions of .   With an infinite number space, it is impossible to simply  
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substitute every known integer in for  and see if it works.  In order to overcome this 

obstacle, mathematicians today employ a technique called clock-arithmetic.  This method 

involves taking a number line and looping it around back on itself, so that a finite number space 

is created.   

 

 (http://knol.google.com/k/-/-/1z0lc1vjx1yhu/d3qhrl/image%20(1).jpg) 

 The picture above is a diagram of 12-clock arithmetic, note that while it does share a 

close resemblance to a regular clock, one difference is that the number twelve is replaced with a 

zero.  In 12-clock arithmetic  instead of the usual , this is calculated by starting at 

the number seven and then moving around eight spaces until finally reaching three.  Similarly 

.  Since clock arithmetic creates a finite number space, once applied 

to an elliptic equation it limits the total number of solutions.  Mathematicians can then list these 

solutions for each clock arithmetic, creating what is called an L-series.  The L-series is used most 

often to describe a particular elliptic equation. (Singh, 1997) 

 Modular forms are some of the most intriguing and confusing objects in mathematics. 

What makes them so interesting is that they exist only on the fourth dimension and are  
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represented by two real axis and two imaginary axis.  Another unique property of modular forms 

is their extreme levels of symmetry.  No matter how they are rotated, reflected, or shifted, 

modular forms will almost always remain unchanged.  What interested Taniyama and Shimura 

the most is the fact that all modular forms are made up of the same basic components, the 

differentiating factor being the amount of each component they contain.  Similar to the L-series 

in elliptic equations, it is then possible to make a list of the components for a particular modular 

form.  This list is sometimes known as a modular series.  Taniyama and Shimura made a 

tremendous discovery when they established a link between these two series.  Elliptic equations 

and modular forms were previously thought to be two entirely different branches mathematics, 

but there now seemed to be a connection.  Some mathematicians remained skeptical however, 

because of the lack of a proof for the conjecture.  Although Taniyama’s and Shimura’s assertion 

appeared to be true, there are an infinite amount of both elliptic equations and modular forms, 

making the possibility that there existed an exception to their rule not unlikely. 

 The significance of the Taniyama-Shimura conjecture and its relevance to Fermat’s Last 

Theorem was not made apparent until 1984 at a mathematical symposium.  Before the 

conference could start, mathematician Gerhard Frey stood up and made a startling 

announcement.  He claimed that if someone were able to develop a proof for the Taniyama-

Shimura conjecture, he or she would also prove Fermat’s Last Theorem at the same time.  Frey 

began his argument by assuming that Fermat’s equation had a hypothetical solution: 

 

He then went on to manipulate the equation until it looked like this: 
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Although it may not be clear at first, what Frey had done was change Fermat’s original into an 

elliptic equation so that: 

 

 

 

Frey then asserted that this elliptic equation had an L-series that was so “abnormal”, it was 

impossible for it to have a matching modular series.  This statement directly conflicts with the 

Taniyama-Shimura conjecture, which states that every elliptic equation must have a 

corresponding modular form.  If the Taniyama-Shimura conjecture is true then Frey’s elliptic 

equation   must not exist, so consequently Fermat’s equation 

must not exist or have any solutions (remember that the two equations are the same, only 

rearranged differently).  If Fermat’s equation  has no solutions then 

Fermat’s Last Theorem must be true. (Singh, 1997) 

Frey’s argument was logical at every step except one.  When he made the statement that 

his elliptic equation did not have a matching modular form, he failed to offer any proof of this 

claim.  Until someone developed such a proof, the connection between the Taniyama-Shimura 

conjecture and Fermat’s Last Theorem could not be made. 

Eighteen months later that proof was finally published by Professor Ken Ribet, one of the 

attending mathematicians at Frey’s lecture.  Using complex math he had sufficiently proved that 

Frey’s elliptic equation could not possibly be modular.  At last Fermat’s Last Theorem seemed to 

provable.  Now the only obstacle remaining towards developing a proof for the theorem was 

proving the Taniyama-Shimura conjecture. 
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Even though Professor Ribet’s completion of the Frey argument was exciting, it did not 

lead to the fervor or rush that one might expect.  Many mathematicians still believed that the 

Taniyama-Shimura conjecture was impossible to prove, so its connection to Fermat’s Last 

Theorem was irrelevant.  One man who thought differently was Andrew Wiles.  Using a concept 

known as group theory Wiles began writing his proof for the Taniyama-Shimura conjecture. 

Group theory is an algebraic idea that deals with combined sets of elements, usually by 

an operation such as addition.  Wiles hoped to combine group theory with other known 

techniques in order to create a proof by induction. (Singh, 1997)  In other words, he was trying 

prove that if the first element in a L-series matches up with the first element in a modular series, 

all the rest would match up as well.  Then he would have to apply that to the infinite amount of 

elliptic equations and modular forms.  It was a daunting task but after eight years of work, Wiles 

came up with a proof that he finally believed worked.  Once published, the initial reaction of the 

mathematical community was astonishment and utter joy.  Here was a riddle that had troubled 

mathematicians for over three hundred years, but now was finally solved.   To be completely 

sure of its accuracy however, Wiles’ proof had to be verified and validated by a few select 

reviewers.  His proof was over one hundred pages long, so chances were he might had made 

some error in his reasoning.  Sure enough, a small mistake was spotted in Wiles’ logic that could 

not be reconciled easily.  Not to be denied, Wiles toiled for two more years until finally in 1995, 

a complete proof of Fermat’s Last Theorem was created. 

Even though Andrew Wiles was the man who eventually came up with the proof in its 

entirety, if it were not for the efforts of all the great mathematicians that came before him it is 

unlikely that Fermat’s Last Theorem would ever have been solved.  Possibly the most famous 

and intriguing mathematical riddle to date, it took over three hundred years for its solution to be 
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revealed.  At long last mathematicians could rest easy knowing the fact that Fermat’s challenge 

to the world was finally answered. 
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