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Abstract 

 Complex numbers, although confusing at times, are one of the most elegant and 

interesting topics in mathematics to have surfaced in the last five centuries. Although it took 

time for them to catch on as legitimate mathematical tools, they have proven themselves again 

and again to be useful in a wide variety of math and engineering topics. This paper will provide 

a solid introduction to the world of complex numbers, including a thorough analysis of what 

exactly they are, and how one goes about operating with them. In addition to that, this paper 

will include some historical background, as well as an in-depth look into a few of the classic 

math problems that complex numbers have helped to solve, as well as some modern uses for 

complex calculations. The reader should be able to leave this paper with a better understanding 

and appreciation of the interesting and elegant world that is complex numbers. 
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Brief overview and basic terminology 

To understand complex numbers, one must first grasp the idea of an imaginary number. 

In case your Algebra II knowledge is a little rusty, let me explain exactly what these things we 

call “imaginary numbers” are. The basis of imaginary number mathematics is the letter “ ”.  is 

equal to the square-root of -1, ( ). You may notice that this is an impossibility; square roots 

of negative numbers cannot exist. That is exactly where the idea of it being “imaginary” comes 

from. It is not a real number in that in cannot exist physically, but the magic comes in that it can 

be manipulated and used to find answers that have significance in the physical world. A 

complex number is a number that incorporates both real and imaginary elements, and is usually 

written in the form a + b  where a and b are real numbers. These numbers are often times 

represented on a 2 dimensional grid; where the real element is represented on the x-axis, and 

the imaginary element is represented on the y-axis; therefore, a complex number can be 

represented by a point with coordinates (x,y), as shown below in Figure 1. This method of 

geometrical representation is referred to as the “complex plane.” 

 

Figure 1. The Complex Plane with the point (a + b ) plotted. 
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 However, before we dive too deeply into the mathematics of complex numbers, let us 

first take a look at the history, and see how people first grappled with the idea of having an 

imaginary number. (Berlinghoff, 2002) 

A brief history of imaginary numbers 

Like many topics in math that are hard to conceptualize, imaginary numbers took a long 

time to become universally accepted as a legitimate concept of mathematical thought. The first 

time anyone really started to examine the possibility  actually being anything more than 

an impossibility was in the year 1545, when the great mathematician Cardano began 

working with solutions to quadratic and cubic equations. Although other mathematicians 

of his day had encountered scenarios where a certain formula led them to a square-root of 

a negative number, Cardano was the first one to not simply dismiss it as an absurd 

impossibility. A perfect example of this comes from his book Ars Magna (1545). The 

specific problem is that of dividing 10 into two parts, whose product is 40. From the 

information given, we know that x + y = 10 and that xy = 40. With simple algebra, we can 

see that:  y = 10 - x, and we can substitute that in to get the equation x(10 – x) = 40. By 

distributing x and adjusting the equation a bit, we see that  x2 – 10x + 40 = 0. By 

substituting the appropriate values into the quadratic equation, we get that 

 

So our solutions are 

x =     and     x =  
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With some manipulation we can simplify this to: 

x =     and   x = 
–

 

Which can be further simplified to: 

x =    and   x =  

And if we divide the entire numerator by 2, we get our final solutions of: 

x =    and   x =  . 

If you examine these solutions closely, you might realize that they do indeed satisfy 

the parameters of the problem; their sum is 10, because when you add the two solutions 

together, (   + - ) just becomes equal to 0, and you are left with the simple 

equation 5 + 5, which, as we can see, is equal to 10. The other parameter that we must 

meet is that their product needs to be equal to 40. To find this we must multiply the two 

solutions out as such: 

(  ) (  )   =   25 - 5  + 5  – ( )2 

We can see that (- 5  + 5 ) is once again just equal to 0, so with that 

out of the equation, we are left with just: 25 - ( )2 . Basic mathematics tells us that if 

we square a square-root, we are left with simply whatever is under the radical; in this case 

(-15). If we apply this to our remaining equation we get: (25 – (-15)) which we can see is 

indeed equal to 40. (Nahin, 1998) 
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You may be asking yourself how that is possible. From differential calculus, we can 

see that it is impossible for two numbers whose sum is ten to have a product of forty: 

We know our two variables have to be (x) and (10 – x), so if we set f(x) equal to 

their product, we can use calculus to determine the maximum value that their product can 

be. 

Since we know that f(x) = x (10-x) = - x2 + 10x, we can determine that                          

f ’(x) = -2x + 10  and that  f ’’(x) = -2. 

If we set f ’(x) equal to 0, we can solve and see that f ’(x) = 0 at the point  x = 5. With 

the knowledge that f ’(5) = 0  and that f ’’(x) = -2 at all values of x, we can say without 

doubt that f(x) has its maximum at x = 5. If we substitute that value back into our original 

equation, we see that f(5) = -(52) + 10(5) = (-25) + 50 = 25. This proves that the 

maximum possible product of two numbers whose sum is 10 happens to be 25; 15 shy of 

our desired value of 40. 

This proves that the solutions we found cannot exist as real numbers, but yet they fit 

the parameters of the problem. That is the magic of complex numbers; although they 

cannot themselves exist in the physical world, they enable us to find real solutions to real 

problems. Cardano was perplexed by this; he at first acknowledged that the solutions did fit 

the parameters of the problem, but he claimed that such solutions were useless when 

applied to real world problems. However, that assumption was soon proved wrong. 

During the 16th century, one of the greatest problems plaguing mathematicians was 

finding a formula to calculate the roots of cubic equations. However, after years of different 
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mathematicians toiling away at it, a solution to the general cubic equation was finally 

discovered by none other than Cardano. Although other mathematicians had discovered 

solutions to particular types of cubic equations before, and those had aided Cardano 

significantly in his discovery of the general solution, Cardano is usually accredited with first 

publishing a solution to the general cubic, and even to this day the formula is still known as 

the “Cardano formula.” (Berlinghoff, 2002) 

Cardano’s solution to cubic equations in the form of  x3 + px + q = 0 is: 

x =      (Berlinghoff, 2002, p. 142) 

The formula, in most cases, works just fine, and is able to provide you with a 

solution to any cubic equation in that form. However, certain equations present problems. 

One of these equations was proposed by the great mathematician Rafael Bombelli in his 

book Algebra (1572). The particular cubic equation he proposed was  x3 – 15x – 4 = 0. 

From the equation, we see that our “p” value is (-15) and our “q” value is (-4). When 

we substitute those into Cardano’s formula, we get: 

x =  

Which can be simplified to: 

x =   +    

 



 
8 Complex Numbers: A Brief Introduction. 

Which is equal to: 

x =    +    

Again, we encounter a situation where we have to deal with the square-root of a 

negative number. You might think that maybe this equation simply does not have a real 

number root. However, if you go back and try x = 4 in the original equation, you will see 

that it indeed does satisfy the equation. How then, do we get an answer of 4 out of this 

jumbled mess of radicals? Cardano had encountered this problem himself, but had simply 

dismissed it as unsolvable. It was not until the work of Bombelli that people actually began 

doing advanced arithmetic with complex numbers. Bombelli was in fact the man who 

discovered how to do basic operations with complex numbers; but we’ll get to that later. 

Anyway, if we incorporate  into the equation, we are able to work it out to achieve our 

desired answer of 4, as such: 

x =    +    

Is equal to: 

x =    +    

Which we can rewrite as: 

x =    +    
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Which we can say is equal to: 

x =    +      (notice that the number under the radical is 

in the form of (a+b )) 

Bombelli developed a method of calculating cube roots of these complex numbers, 

but seeing as his proof is long and somewhat tedious, we’ll just state that   and  

  are equal to (2 + ) and (2 – ) respectively, which is indeed mathematically 

correct. Once we have it in this simple form, it is easy to see that with simple arithmetic, we 

are able to get our desired answer of 4, which satisfies our original equation of:                           

x3 – 15x – 4 = 0. 

 x =    +     =  (2 + ) + (2 – )  =  2 +  + 2 –   = 4     

 This was just the first of many instances of real situations where one needed to compute 

with complex numbers in order to obtain a real answer. (Nahin, 1998) 

Basic operations 

 Although complex numbers must obey most of the same rules as real numbers, there are 

certain rules that we take for fact in the world of real numbers, but that don’t hold as true 

in the world of complex numbers. The most common of these is the rule for multiplying 

radicals. 

 In the real number world, if we see something like , we can break it into (  * ), 

which is equal to (2 ), which is much easier to work with. However, if we try to do the 

same thing with imaginary numbers, but in reverse, it doesn’t work. For example: 
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 *      = 6 

In actuality: 

 *   =  (   ) * (   ) 

Which can be simplified to: 

(3i) (2i) = 6(i 2) = 6 (-1) = -6 

     This just goes to show that although most basic operations with complex numbers are 

done with the same processes as are real numbers; there are certain situations and rules 

that don’t carry over from one realm to the next. (Berlinghoff, 2002) 

     Simple operations can be done in essentially the same way that one would deal with any 

equation; by combining like terms and simplifying. That being said, one crucial component 

one must remember when operating with complex numbers is the powers of . These 

properties of  are one of the things that make complex numbers so unique, as well as so 

useful in a variety of fields. The powers of  are cyclical in that as the power you raise  to 

increases, a repeating pattern appears in the values you get. Let’s start from the bottom 

with  0. We know that anything raised to the 0 power (with the exception of 0 itself), is 

going to be equal to 1;  is no different: 0 = 1. We also know that any number raised to the 

power of 1 is just going to be that number itself, unchanged. The same applies for : 1 = .  

     2 is simply ( , and when you square a square-root, you are always left with what 

is under that radical, no matter what it is. By this definition, 2 = -1.  
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   3 can simply be thought of as ( 2) * ( 1), which according to our definition of 2, is just        

(-1) * ( ), or just – .  

     4, in a similar manner, can be thought of as just ( 2 * 2), which again, according to our 

previous definition of 2, is just (-1) * (-1), or just 1. 

 Now the pattern just begins to repeat itself: 5 can be rewritten as just ( 4) * ( 1) which we 

know now is just equal to (1) * ( ), or just . The pattern continues from there, repeating 

itself with every fourth power. A general way to write this repeating pattern is simply:  

 4n = 1,   4n+1 = ,   4n+2 = -1   and   4n+3 = -    where ‘n’ is any integer.  (Nahin, 1998) 

     Once you know the powers of , it is easy to do simple computations, such as 

multiplication. Take, for example, the general form of (a +b ) (c + d ): 

If we multiply the two terms together, we get: 

ac + ad  + bc  + bd( 2) 

We know that 2 is just equal to (-1), so if we substitute that into the equation, we get: 

ac + ad  + bc  + bd(-1)  =  ac + ad  + bc  – bd 

Then, if we factor out  from the appropriate terms, we are left with: 

(ac – bd) + (ad + bc) 

 This is indeed the product of our two original terms, and all complex numbers can be 

multiplied using this form. (Berlinghoff, 2002) 
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Some practical applications for complex numbers 

 As I’ve stated before, complex numbers have no real representation in the physical world, 

but yet they are an extremely useful tool in performing calculations that certainly have 

bearing in the real world. The most useful application for complex numbers is the fact that 

they can be geometrically represented on a 2 dimensional plane, and they have the 

capability of incorporating two different values into a single vector that can be used to 

perform computations. In other words; they essentially let us transform the traditional 

number line into 2 dimensions instead of just 1. This fact makes the complex number set 

essentially similar to the real number set, but instead of just going to infinity in one 

dimension, it goes to infinity in two dimensions. It has been proven that the cardinality of 

the complex set is equivalent to that of the real numbers, but the complex numbers are 

expressed as a two dimensional number system, which expands their useful applications 

dramatically. 

 In fields like electrical engineering, where in some cases a single number needs to 

represent multiple values, complex numbers prove themselves to be useful because you 

can use a single calculation to deal with a 2 dimensional problem. Adding complex vectors 

works exactly the same as computing with complex numbers, because the vectors created 

are just line segments going from the origin to a specified point. For example, if you need to 

add: 

(5+3 ) and (2-5 ),   then you need only to add the complex numbers as such: 

(5 + 3  + 2 - 5 ) = (7 - 2 )    (Nahin, 1998) 
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 This single step lets us add together vectors that incorporate two completely different 

values, thus letting us make computations such as that much more easily. 

     The complex plane is also used in the world of fractals and chaos theory. Probably the 

most famous fractal, the Mandelbrot set, is composed on the complex plane with a certain 

set of complex points, whose boundary makes up the perimeter of the fractal. 

Conclusion 

 It cannot be denied that the advent of complex numbers has revolutionized the world of 

advanced mathematics, and it can undoubtedly be said that their usefulness in a variety of 

topics and applications has paved the way for numerous new innovations and discoveries. 

     As the French mathematician Jacques Hadamard (1865-1963) put it, “The shortest path 

between two truths in the real domain passes through the complex domain.” (Berlinghoff, 

2002, p. 146) 
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